
Plotting package evaluation

Introduction

We would like to evaluate several graphics packages for possible use in the GLAST
Standard Analysis Environment. It is hoped that this testing will lead to a
recommendation for a plotting package to be adopted for use by the science tools. We
will describe the packages we want to test, the tests we want to do to (given the short
time and resources for doing this), and then the results of the evaluation.

Finally we will discuss the conclusions of our testing and hopefully make a
recommendation.

According to the draft requirements document for plotting packages the top candidates
are:

ROOT
VTK
VisAD
JAS
PLPLOT

There has been some discussion about using some python plotting package: e.g.,Chaco,
SciPy, and possibly Biggles (suggested in Computers in Science and Engineering).

A desired feature is have is the ability to get the cursor position back from the graphics
package. We will look for this desired feature.

An additional desired feature would be to have the same graphics package make widgets
or have a closely associated widget friend. Widget friends will not be tested here, but
will have to studied before agreeing to use it.

Package Widget Friend(s) Comments
Biggles WxPython
Plplot PyQt, Tk, java The Python Qt interface is

only experimental at
present.

ROOT Comes with its own GUI INTEGRAL makes GUIs
from ROOT graphics libs.
We hear this was a bit of a
challenge to do, but much
of the work is already done
for us.

for us.

Tests:

The testing is to be carried out separately in the Windows and Linux environments. For
Linux we use Red Hat 7.2, and for Windows we use Windows 2000. The following tests
and questions were applied to each package:

Create examples of the following 3 plots taken from the PGPLOT web page:

A histogram, e.g.

A scatter plot with both horizontal and vertical error bars:

A contour plot:

Note that the plots have ticks on all four sides (as required for publication) and that they
have have titles (they should also have axes labeled, which seems optional in this demo I
stole the screenshots from.

Also answer the following questions:

1. How difficult is the package to install? (easy, moderate, hard)
2. How many additional packages had to be installed? (0, 1, or many)
3. How hard was it to learn how to use?
4. How complete is the documentation? (good, OK, bad)
5. Can you get the cursor position from the package?
6. Other comments?

Test Results

VTK
The first package was VTK. This was attempted on Windows. The package was fairly
easy to install, although a very large package ~ 20Mb + ~30Mb documentation. The
package is heavily oriented toward 3D plotting. 2-D plotting seems to be possible, but
the learning curve is very steep (users guide and design manuals are both proprietary
~$60) and 2-D plotting would use so little of VTK as to make us wonder why use it at all.
The users guide and reference books do not explicitly cover 2-D plotting. Reports from
users (T. Bridgeman in the Goddard SVS) say that the learning curve is indeed steep;
furthermore, the software is free but the company makes money consulting with users
helping them design applications. These considerations led us to drop any further
evaluation of VTK as an exportable graphics environment.

The tests resulted in the following

Package Test/question Result Linux Result Windows
Histogram? Yes
Scatter? Yes
Contour? Yes
Installation Easy
Dependencies 3 (Numeric, math,

and libplot)
Ease of Use easy
Documentation OK

Biggles (Python)

Cursor position? NO

Comments? Very lightweight
package.
Understands TEX
for labeling. More
packages need to be
downloaded if you
want to do anything
fancier. Nice sphere
projection map
comes with it.
No cursor position
available.

plplot Histogram Yes
Scatter Yes
Contour Yes
Installation Easy
Dependencies Self-contained dist.
Ease of Use Easy
Documentation Good
Cursor Position Yes
Comments No Gif device

available; JPEG and
PNG device drivers
seemed to be
missing needed
headers for libgd to
compile form source
– presumably we
can distribute
executables that
only need to talk to
gd. Python and C
API.

ROOT Histogram Yes Yes
Scatter Yes Yes
Contour Yes Yes
Installation Easy Easy
Dependencies (dist self contained) Self-contained
Ease of Use moderate Moderate
Documentation good Good
Cursor Position Yes Yes
Comments No Gif device came

installed. Support
page queried

Cannot save canvas
jpeg or gif on
Windows.
Note: test was
carried out by
writing C++ code,
not running from the
ROOT command
line.

writing C++ code,
not running from the
ROOT command
line.

Recommendations
The recommendation is of course related to what you want to do. As I see it there are
three options to go with the three packages:

1) plotting done from script interface, and images would be handled by some other
program, e.g., DS9. Here something like Biggles would work well for quick 2-D
plots, the imaging and fancier plots could be done with the image processing tool.

2) Plotting thrown up by C++ and Python code + image processing tool: Here there
is a direct interface to the compileable code. Any program can directly throw up
plots of a reasonable publishable quality. Can make the same plots form the
Python and C world. The easy lightweight solution wpi;d then be plplot.

3) Plotting from C++ and Python Code: If we want the GUIs, images, and Plots to be
callable from C++ ROOT is our choice. If we want to keep scripting, we can do
this with Python. http://proj-gaudi.web.cern.ch/proj-gaudi/RootPython/ has a
Python wrapper for ROOT. The setup for RootPython was difficult and the
interface proved to be fragile. Apparently later versions of Boost (after 1.25)
have broken the RootPython package. How difficult will this be to maintain?

Recommendations are based on how we want to structure the User interface. If we want
to just wrap C++ libraries in a scripting language and then use the scripting language to
to handle graphics and GUIs, we probably don’t need the full power of ROOT, and so
Plplot would be a good choice. Plplot can also then be called from the C++ code.
If however we want the GUIs to be integrated into our C++ code, ROOT would be a
good choice.

Appendix: Plot Shots

Biggles:

Histogram_Linux:

Scatter Plot:

Linux Contour

extras:

Linux mulitplot:

Linux Map:

Plplot

Linux Histogram:

Linux Scatter:

Linux contour

Linux Multi

Linux map

ROOT

Linux Histogram

Linux Scatter plot

Linux Contour

Windows contour/multi

Linux Multi

Linux Error bar plot

Windows error bars

Linux_map: No obvious easy map display (maybe with INTEGRAL graphics libs)
Windows_map: Not attempted.

